CHEMIE POLYFUNKTIONELLER MOLEKÜLE

LXXVII *. DAS REAKTIONSVERHALTEN VON BIS(DIPHENYLPHOSPHINO)AMIN GEGENÜBER DI-µ-CHLORO-BIS[DICARBONYLRHODIUM(I)]

JOCHEN ELLERMANN*, GYOPÁR SZUCSÁNYI,

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, D-8520 Erlangen (B.R.D.)

KURT GEIBEL und EBERHARD WILHELM

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestr., 42, D-8520 Erlangen (B.R.D.)

(Eingegangen den 6. Oktober 1983)

Summary

This paper describes the direct synthesis of the A-frame complex $Rh_2(\mu$ -CO)(μ - $Ph_2PNHPPh_2)_2Cl_2 \cdot CH_3OH \cdot O(C_2H_5)_2$ (IV') from $[Rh(\mu-Cl)(CO)_2]_2$ and $Ph_2-PNHPPh_2)_2Cl_2 \cdot CH_3OH \cdot O(C_2H_5)_2$ PNHPPh₂ (I). The intermediates formed, $[Rh_2(\mu-CO)(\mu-Cl)(\mu Ph_2PNHPPh_2)_2$ - $(CO)_{2}$]Cl · 0.5O(C₂H₅)₂ (Va), Rh₂(μ -CO)(μ -Cl)(μ Ph₂PN HPPh₂)₂- $(CO)(Cl) \cdot 0.5O(C_2H_5)_2$ (VI), and the by-product $[Rh(CO)(Cl)(Ph_2PNHPPh_2) \cdot$ (1-2) CH₃OH]_n (VII), were isolated and characterized. Compound IV' reacts with CO to yield Va, which undergoes a metathesis reaction with NaBPh₄ or NH_4PF_6 to give $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]BPh_4 \cdot CH_3OH$ (Vb) and $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]PF_6$ (Vc). The reaction of $[Rh(\mu-Cl)(CO)_2]_2$ with I in a molar ratio of 3/4, yields $[Rh_2(\mu-CO)(\mu-Cl) (\mu-Ph_2PNHPPh_2)_2(CO)_2[Rh(CO)_2Cl_2] \cdot 2CH_3OH$ (Vd). The reaction of $[Rh(\mu-Cl)(CO)_2]_2$ with I in a closed tube (molar ratio 1/2) yields $[Rh_2(\mu-CO) (\mu$ -Cl) $(\mu$ -Ph₂PNHPPh₂)₂(CO)₂]Cl · CH₃OH (Va'). The compound [Rh₂(μ -Cl)- $(\mu$ -Ph₂PNHPPh₂)₂(CO)₂]BPh₄·CH₃OH (VIII) is obtained from Vb in methanolic solution with CO elimination. From a solution of VIII in CH₂Cl₂, [Rh₂- $(\mu$ -Cl) $(\mu$ -Cl₂ $(\mu$ -Ph₂PNHPPh₂)₂(CO)₂]BPh₄ · O(C₂H₅)₂ (IX) precipitates on adding diethyl ether. Red IX in methanolic solution converts back to the yellow VIII. The structures of the new compounds are determined on the basis of ${}^{31}P{}^{1}H{}$ NMR, ¹H NMR, IR, ESR and MS spectroscopic and conductometric data.

^{*} LXXVI. Mitteilung siehe Ref. 1.

Zusammenfassung

Die Arbeit beschreibt die Direktsynthese des A-Frame-Komplexes Rh₂(µ-CO)(µ- $Ph_2PNHPPh_2)_2Cl_2 \cdot CH_3OH \cdot O(C_2H_5)_2$ (IV') ausgehend vom $[Rh(\mu-Cl)(CO)_2]_2$ und Ph₂PNHPPh₂ (I). Die bei dieser Synthese intermediär auftretenden Zwischenprodukte $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]Cl \cdot 0.5O(C_2H_5)_2$ (Va), $Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)(Cl) \cdot 0.5O(C_2H_5)_2$ (VI) und das Nebenprodukt $[Rh(CO)(Cl)(Ph_2PNHPPh_2) \cdot (1-2) CH_3OH]_n$ (VII) wurden isoliert und charakterisiert. IV' reagiert mit CO zu Va, das sich unter Metathese mit NaBPh₄ oder NH₄PF₆ zu $[Rh_2(\mu-CO)(\mu-Ch)(\mu-Ph_2NHPPh_2)_2(CO)_2]BPh_4$. CH₃OH (Vb) und $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]PF_6$ (Vc) umsetzt. Bringt man $[Rh(\mu-Cl)(CO)_2]_2$ mit I im Molverhältnis 3/4 zur Reaktion, so erhält man $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2][Rh(CO)_2Cl_2] \cdot 2CH_3OH$ (Vd). Bei Anwendung eines Molverhältnisses von 1/2 und Arbeiten im Einschlussrohr ist $[Rh_{1}(\mu-CO)(\mu-Cl)(\mu-Ph_{2}PNHPPh_{2})_{2}(CO)_{2}]Cl \cdot CH_{3}OH$ (Va') zugänglich. Unter CO-Eliminierung reagiert Vb in Methanol zu [Rh₂(µ-Cl)(µ-Ph₂PNHPPh₂)₂(CO)₂]- $BPh_4 \cdot CH_3OH$ (VIII). Aus einer Lösung von VIII in CH₂Cl₂ fällt auf Zugabe von Diethylether $[Rh_2(\mu-Cl)(\mu-CH_2Cl_2)(\mu-Ph_2PNHPPh_2)_2(CO)_2]BPh_4 \cdot O(C_2H_5)_2$ (IX) aus. Mit Methanol lässt sich das rote IX wieder in das gelbe VIII überführen.

Die Strukturen der neuen Verbindungen wurden an Hand von ³¹P{¹H}-NMR-, ¹H-NMR-, IR-, Raman-, Massen- und ESR-Spektren, sowie auf Grund von Leitfähigkeitsmessungen und thermogravimetrischen Untersuchungen ermittelt.

Einleitung

Bis(diphenylphosphino)amin $(Ph_2P)_2NH$ (I), das auf verschiedenen Synthesewegen zugänglich ist [2–5], beanspruchte in den letzten Jahren als Komplexligand besonderes Interesse [1, 5–13]. Ähnlich wie $(F_2P)_2NCH_3$ [14], $(PhO)_2PN(R)P(OPh)_2$ (R = Alkyl) [15], $Ph_2PCH_2PPh_2$ [16], $Ph_2AsCH_2AsPh_2$ [16] und $PhSCH_2SPh$ [17] ist I zur Bildung von A-Frame- [7] und verwandten, ligandenverbrückten [1. 9, 10, 13] Metall-Komplexen geeignet. Wegen der NH-Gruppe, die mit Anionen und polaren Lösungsmitteln meist Wasserstoffbrückenbindungen eingeht, zeigen die Metallkomplexe von I vielfach strukturelle Besonderheiten [7,8], die bei vergleichbaren Komplexen mit den anderen oben genannten Liganden nicht gegeben sind. In der vorliegenden Arbeit wird nun über die verschiedenen Komplexe, die im System $[Rh(\mu-Cl)(CO)_2]_2/Ph_2PNHPPh_2/CH_3OH$ entstehen, berichtet.

Ergebnisse und Diskussion

Präparative Ergebnisse

Bereits früher konnte gezeigt werden, dass sich I mit Di- μ -chloro-bis[dicarbonylrhodium(I)] im Molverhältnis 4/1 in Benzol entsprechend Gl. 1 umsetzt und hierbei den Chelatkomplex II bildet [7].

$$4 (Ph_2P)_2NH + [Rh(\mu-Cl)(CO)_2]_2 \xrightarrow{-2CO} 2 \left\langle Rh(CO) [(Ph_2P)_2NH]_2 \right\rangle Cl$$
(1)
(I)

Letzterer reagiert in siedendem Methanol unter teilweiser Eliminierung von CO und I zu III und dem roten, kristallinen, solvatfreien A-Frame-Komplex IV (Gl. 2) [7].

SCHEMA 1

299

Fig. 1. IR-Spektrum des Substanzgemisches aus IV', Va, VI und einer Spur VII

In diesem Zusammenhang war es nun von Interesse die direkte Darstellung von IV aus Di-µ-chloro-bis[dicarbonylrhodium(I)] und I zu versuchen. Erhitzt man zu diesem Zweck die beiden Komponenten im Molverhältnis 1/2 in Methanol 5 h unter Rückfluss, so entsteht unter Eliminierung von CO, gemäss dem Reaktionsschema (Schema 1, Gl. 3) die erwartete A-Frame-Verbindung IV, sie wird jedoch nach Umkristallisation aus Methanol/Ether als Methanol/Ether-Solvat IV' isoliert. Die Reaktion verläuft über den salzartigen Komplex Va und über die neutralverbindung VI, die nach Aufarbeitung der Reaktionsmischungen als Semietherate zugänglich sind. Unterbricht man die Reaktion (Gl. 3) nach etwa 3 h und gibt zu der erkalteten Reaktionslösung Diethylether, so fällt ein ether- und methanol-haltiges Substanzgemisch aus, das auf Grund der Intensitäten der IR-Banden zu etwa 30% aus Va (fest in KBr; ν (NH · · · Cl) 2560s-m,br; ν (CO) 2004s, Sch; 1975m-st; ν (C=O) 1865m cm⁻¹), 40% VI (fest in KBr; ν (CO) 1955st; ν (C=O) 1855m cm⁻¹) 30% IV' (fest in KBr; ν (C=O) 1778m cm⁻¹) und einer Spur eines Komplexes VII, der eine IR-Absorption bei 2055 cm⁻¹ zeigt (Fig. 1), besteht. Die eindeutige IR-spektroskopische Identifizierung von IV', Va und VI war möglich, da alle Substanzen, wie später noch beschrieben wird, in Reinsubstanz isoliert werden konnten. Lediglich bei dem rotbraunen VII, das zwar auch in geringer Menge isolierbar ist, aber mit unterschiedlichen Solvatmengen anfällt, war eine eindeutige Charakterisierung nicht möglich.

Aus dem obigen Substanzgemisch lässt sich der A-Frame-Komplex IV' mit Methanol relativ leicht herauslösen. Zurückbleibt ein Gemisch, das vorwiegend aus Va und VI besteht und noch Spuren von IV' und VII enthält (Fig. 2). Der Beweis dafür, dass Va und VI wirklich Zwischenprodukte auf dem Syntheseweg von IV' darstellen und nicht als Nebenprodukte anzusprechen sind, wurde wie folgt erbracht. Man suspendiert das Gemisch aus IV', Va, VI und einer Spur VII wieder in Methanol und führt die Reaktion unter Erhitzen am Rückfluss noch 2 h fort. In gewissen Zeitabständen wird der Reaktionsablauf durch Probenentnahmen kontrolliert. Hierzu werden mittels Pipette Lösungsproben entnommen. Diese werden mit Diethylether überschichtet und die ausfallende Festsubstanz wird IR-spektroskopisch untersucht. Die Reihe der aufgenommenen IR-Spektren (Fig. 3 und 4) zeigen sehr schön, wie die charakteristischen CO-Valenzschwingungsbanden von Va (ν (CO)

Fig. 2. IR-Spektrum des Substanzgemisches aus Va und VI mit Spuren von IV' und VII.

Fig. 3. IR-Spektrum von IV' mit geringen Mengen an Va, VI und VII.

Fig. 4. IR-Spektrum von IV' mit einer Spur von VII.

2004, 1975; ν (C=O) 1865 cm⁻¹) und VI (ν (CO) 1955; ν (C=O) 1855 cm⁻¹) mit fortschreitender Reaktion in ihrer Intensität stark abnehmen, während gleichzeitig die Brücken-(C=O)-Valenzschwingungsbande von IV' bei ca. 1780 cm⁻¹ deutlich an

Intensität zunimmt (Fig. 3). Gegen Ende der Reaktion wird schliesslich neben einer Spur an VII (ν (CO) 2055 cm⁻¹), nur noch die ν (C=O) von IV' bei 1778 cm⁻¹ beobachtet (Fig. 4). Wie aus den Figuren 1–4 ersichtlich, variieren die Spektren im Bereich der aliphat. ν (CH) und unterhalb 1400 cm⁻¹ etwas. Dies ist auf den unterschiedlichen Gehalt der Proben an Methanol und (oder) Diethylether zurückzuführen. Für das aus Methanol/Diethylether umkristallisierte IV' folgt das Vorliegen zweier verschiedener Solvatmoleküle aus dem Zweistufenprozess der Thermogravimetrie. Im FD-Massenspektrum von IV' wird der Molekülpeak des solvatfreien IV beobachtet.

Das bei der Reaktion (Gl. 3) als Zwischenprodukt auftretende Va kann aus IV' in Reinsubstanz dargestellt werden. Hierzu wird durch eine Suspension von IV' in Methanol bei Raumtemperatur CO geleitet. Es entsteht eine klare gelbe Lösung, aus der nach Zugabe von Diethylether Va als Semietherat auskristallisiert.

Führt man die Reaktion (Gl. 3) bei gleichem Molverhältnis der Ausgangsverbindungen und im gleichen Lösungsmittel Methanol, jedoch in einem Einschlussrohr bei etwa 110°C durch, so bleibt die Reaktion auf der Stufe von Va stehen. Die aus Methanol auskristallisierende Verbindung $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2-(CO)_2]Cl \cdot CH_3OH$ (Va') enthält im Vergleich zu Va ein Mol Methanol an Stelle des Diethylethers. Bei beiden Verbindungen wurde der Solvatgehalt thermogravimetrisch bestimmt. Für Va und Va' wird der 1/1-Elektrolytcharakter durch Leitfähigkeitsmessungen und durch Austausch des Chlorid-Anions gegen andere grossvolumige Anionen, wie Tetraphenylborat und Hexafluorophosphat, bewiesen. Durch Umsetzung des in Methanol gelösten Va mit NaBPh₄ bzw. NH₄PF₆ erhält man nämlich die 1/1-Elektrolyte $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]BPh_4 \cdot CH_3OH$ (Vb) und $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]PF_6$ (Vc).

Schliesslich wird das Zwischenprodukt VI der Reaktion 3 zum Hauptprodukt der Umsetzung, wenn man die Reaktion bei sehr grosser Verdünnung durchführt. Der Ethergehalt des mit Diethylether ausgefällten Nichtelektrolyten VI wurde thermogravimetrisch, der molekulare Bau osmometrisch bestimmt. Aus dem Filtrat von VI fällt nach mehrtägigem Stehen bei -18° C feinverteiltes, rotbraunes VII in sehr geringer Ausbeute an. Thermogravimetrisch lässt sich für VII eindeutig Methanol nachweisen, jedoch schwankt der Gehalt zwischen 1–2 Mol für die monomere Einheit, so dass eine genaue analytische Zusammensetzung nicht angegeben werden kann. Möglicherweise ist ein Teil des Methanols oxidativ am Rhodium addiert. Die kurzwellige Lage der IR-Absorption bei 2055 cm⁻¹ (ν (CO) oder ν (RhH)) könnte mit einem Rhodium(III)-Komplex in Einklang gebracht werden [18].

Setzt man Di- μ -chloro-bis[dicarbonylrhodium(I)] mit Bis(diphenylphosphino)amin (I) in Methanol, im Molverhältnis 3/4 bei 40°C um, und leitet gleichzeitig einen CO-Strom durch die Lösung, so entsteht entprechend Gl. 4 die Verbindung Vd, die neben dem *cis*-[Rh(CO)₂Cl₂]-Anion ebenfalls das Kation von Va, Vb, Vc und Va' enthält.

$$3[Rh(\mu-Cl)(CO)_{2}]_{2} + 4(Ph_{2}P)_{2}NH \xrightarrow{CO} 2CO +$$

$$(I)$$

$$2[Rh_{2}(\mu-CO)(\mu-Cl)(\mu-Ph_{2}PNHPPh_{2})_{2}(CO)_{2}][Rh(CO)_{2}Cl_{2}] \cdot 2CH_{3}OH$$

$$(Vd) \qquad (Vd) \qquad (4)$$

Der Solvatgehalt von Vd wurde thermogravimetrisch ermittelt; der 1/1-Elektrolytcharakter folgt aus Leitfähigkeitsmessungen.

Von den beschriebenen Verbindungen zeigt Vb eine bemerkenswerte Eigenschaft. Zunächst ist festzustellen, dass dem in Vb enthaltenem Methanol auf Grund der kurzwelligen Lage der $\nu(OH)$ - und $\nu(NH)$ -Banden (Tab. 4) reine Kristallsolvatfunktion zukommt. Löst man nun Vb in Methanol und versucht die Lösung bei Raumtemperatur unter vermindertem Druck einzuengen, so entsteht unter Eliminierung von CO die neue Verbindung VIII (Gl. 5).

$$[\operatorname{Rh}_{2}(\mu\operatorname{-CO})(\mu\operatorname{-Cl})(\mu\operatorname{-Ph}_{2}\operatorname{PNHPPh}_{2})_{2}(\operatorname{CO})_{2}]\operatorname{BPh}_{4} \cdot \operatorname{CH}_{3}\operatorname{OH} \rightarrow (\operatorname{Vb})$$

$$[\operatorname{Rh}_{2}(\mu\operatorname{-Cl})(\mu\operatorname{-Ph}_{2}\operatorname{PNHPPh}_{2})_{2}(\operatorname{CO})_{2}]\operatorname{BPh}_{4} \cdot \operatorname{CH}_{3}\operatorname{OH} + \operatorname{CO} (5)$$

$$(\operatorname{VIII})$$

Elementaranalyse, Thermogravimetrie und Schwingungsspektren (Tab. 5) beweisen, dass VIII 1 Mol Methanol enthält und bis auf die fehlende Brücken-CO-Valenzschwingungsbande praktisch das gleiche IR-Spektrum wie Vb liefert. Wie später beschrieben, kann u. U. das Solvatmethanol im Kation von VIII auch eine Brückenposition besetzen. Die Reaktion (Gl. 5) zeigt, dass die Carbonyl-Gruppen in Vb wie in vergleichbaren Komplexen [19] relativ locker gebunden sind.

Die Lösung von VIII in *Dichlormethan* ändert ihre Farbe sehr schnell von Gelb nach Dunkelrot. Gleichzeitig bleiben mit Ausnahme der Methanolbanden alle anderen IR-Banden (Tab. 5) nahezu lagekonstant. Die durch Einengen und Zugabe von Diethylether gewonnene dunkelrote Verbindung enthält auf Grund der Analyse, der Thermogravimetrie und der Schwingungsspektren genau 1 Mol Dichlormethan und etwa 1 Mol Diethylether und erweist sich als IX (Gl. 6).

$$\begin{bmatrix} Rh_{2}(\mu-Cl)(\mu-Ph_{2}PNHPPh_{2})_{2}(CO)_{2} \end{bmatrix} BPh_{4} \cdot CH_{3}OH \\ (VIII) \\ CH_{3}OH \uparrow \downarrow CH_{2}Cl_{2} . \tag{6}$$

$$Rh_{2}(\mu-Cl)(\mu-CH_{2}Cl_{2})(\mu-Ph_{2}PNHPPh_{2})_{2}(CO)_{2} \end{bmatrix} BPh_{4} \cdot O(C_{2}H_{5})_{2} \\ (IX)$$

Die Tatsache, dass beim Auflösen von IX in Methanol wieder eine gelbe Lösung entsteht und aus dieser Lösung mit Diethylether wiederum die gelbe Verbindung VIII ausfällt, deutet darauf hin, dass die Farbänderung möglicherweise mit einem Koordinationswechsel der Lösungsmittelmoleküle an der Rh-Rh-Brücke in Zusammenhang gebracht werden kann und VIII vielleicht besser als $[Rh_2(\mu-Cl)(\mu-CH_3OH)(\mu-Ph_2PNHPPh_2)_2(CO)_2]BPh_4$ zu formulieren ist.

³¹P-{¹H}-NMR und ¹H-NMR-Spektren

ĺ

Die Substanzen zeigen in gängigen Lösungsmitteln allgemein nur eine begrenzte Löslichkeit, so dass lediglich von IV', Vb–Vd und IX ${}^{31}P{}^{1}H{}^{-}$ und ${}^{1}H{}$ -NMR-Spektren aufgenommen werden konnten (Tab. 1). Bei VI war die Löslichkeit nur für die Registrierung von ${}^{1}H{}$ -NMR-Spektren ausreichend. Da VIII nur in CH₂Cl₂ löslich ist und dann sofort in IX übergeht, sind die NMR- und IR-Spektren von VIII in CH₂Cl₂ mit denen von IX identisch (Tab. 1 und Tab. 5). Versuche die Löslichkeit von Vb, Vd durch Anwedung von Lösungsmittelgemischen zu erhöhen führten dazu, dass die Kationen von Vb, Vd teilweise unter Eliminierung des Brücken-CO das

TABELLE 1

³¹P-{¹H}-NMR- UND ¹H-NMR-SIGNALE (δ -Werte in ppm; Tieffeldverschiebung: positives Vorzeichen; externer Standard: H₃PO₄; interner Standard: Losungsmittelsignal, umgerechnet auf TMS; *J* in Hz) VON Rh₂(μ -CO)(μ -Ph₂PNHPPh₂)₂Cl₂·CH₃OH·O(C₂H₅)₂ (IV'), [Rh₂(μ -CO)(μ -Cl)(μ -Ph₂-PNHPPh₂)₂(CO)₂]X (X = BPh₄·CH₃OH (Vb), X = PF₆ (Vc), X = [Rh(CO)₂Cl₂] 2CH₃OH (Vd)), Rh₂(μ -CO)(μ -Cl)(μ -Ph₂PNHPPh₂)₂(CO)(2)] · 0.5O(C₂H₅)₂ (VI) UND [Rh₂(μ -Cl)(μ -CH₂Cl₂)(μ -Ph₂PNHPPh₂)₂(CO)₂]BPh₄·O(C₂H₅)₂ (IX)

Verbin-	$^{31}P-{^{1}H}-NMR$			¹ H-NMR			
dung	Lösungsmittel	$\delta({}^{31}\mathrm{P}\{{}^{1}\mathrm{H}\})$	J(Rh-P)	Losungs- mittel	δ(C ₆ H ₅ P/ C ₆ H ₅ B)	δ(NH)	$\delta(CH_3)$
1V'	CH ₂ Cl ₂ /CD ₂ Cl ₂	71.37 d	123.60	CD ₂ Cl ₂	7.57 m (40H)	3.57 (2 H)	
Vb	CH,Cl,/CDCl,	71.38 d	124.51	CD,Cl,	7.62 m (40H; P)		
	= 9/1	64.98 d ^a	122.07 ª		7.05 m (20H; B)		
Vc	$(CD_3)_2CO$	74.60 d	100.70	CD ₃ OD	7.38 m		
Vd	CH ₂ Cl ₂ /CDCl ₁	75.91 m		CDCl ₃	7.44 m		
	= 9/1	65.23 d ^{<i>b</i>}	123.60 ^b	5			
VI	•			CD_2Cl_2	7.41 m (40H)		1.32 m (3 H)
IX	CH_2Cl_2/CD_2Cl_2	65.49 d	120.54	CD_2Cl_2	7 49 m (40H; P)		
					6.95 m (20H; B)		

" Signal gehört zu IX. das aus Vb unter CO-Eliminierung in $CH_2Cl_2/CDCl_3$ entsteht." Signal gehört zum Kation von IX, das aus Vd unter CO-Eliminierung in $CH_2Cl_2/CDCl_3$ entsteht.

Kation von IX bilden. Dementsprechend zeigen die ³¹P-{¹H}-NMR-Spektren von Vb, Vd zusätzlich noch die Signale des Kations von IX. In den ³¹P-{¹H}-NMR-Spektren von IV' und Vb-Vd findet sich, in Übereinstimmung mit den Strukturvorschlägen für den Neutralkomplex und das Kation, jeweils ein Multiplett zwischen 71 und 76 ppm, das als AA'A"A"'XX'-System analysiert werden kann [7,19]. In erster Näherung lässt sich zwischen den zwei dublettartigen Hauptsignalen eine Rh-P-Kopplung von ca. 100-125 Hz feststellen. Beim Kation von IX, das teilweise oder vollständig beim Lösen von Vb, Vd und VIII in halogenierten Kohlenwasserstoffen entsteht, wird das ³¹P-{¹H}-NMR-Signal bei ca. 65 ppm deutlich einfacher beobachtet, da keine Rh-Rh-Kopplung mehr auftritt. In Übereinstimmung mit den Raman-Daten enthalten VIII und IX keine Rh-Rh-Bindungen.

ESR-Spektren

Die ESR-Spektren von IV, IV', Va-Vd, Va' und VI, die für diese Verbindungen ausnahmslos diamagnetisches Verhalten ergaben, stützen das Vorliegen von Metall-Metall-Bindungen in diesen Komplexen.

Schwingungsspektren

Während der Solvatgehalt der vorliegenden Komplexe in den ¹H-NMR-Spektren wegen der geringen oder ungenügenden Löslichkeit nur unsicher oder überhaupt nicht feststellbar ist, kann er in den IR-Spektren in Zusammenhang mit der Thermogravimetrie im allgemeinen eindeutig belegt werden. So zeigt IV' eine breite ν (OH)-Bande bei 3300 cm⁻¹ (Tab. 2) wie sie auch beim flüssigen Methanol beobachtet wird. Gleichzeitig ist die ν (NH)-Bande im Vergleich zum solvatfreien IV deutlich langwellig verschoben und verbreitet. Daraus kann gefolgert werden, dass das Solvat-Methanol und die NH-Gruppen in IV' in Wasserstoffbrückenbindungen

3	
щ	
E	
BE	
TA	

CHARAKTERISTISCHE SCHWINGUNGSBANDEN (cm⁻¹) VON Ph₂PNHPPh₂ (I), Rh₂(μ -CO)(μ -Ph₂PNHPPh₂)₂Cl₂ (IV) [7] UND Rh₂(μ -CO)(μ -Ph₂PNHPPh₂)₂Cl₃ (IV) [7] UND Rh₂(μ -CO)(μ -Ph₂PNHPPh₂)₂Cl₃ (IV) (Abkürzungen: sst = sehr stark, st = stark, m = mittel, s = schwach, br = breit.)

Zuordnung		and the second	IV			IV'		
	IR/FIR	Raman	IR/FIR		Raman	IR/FIR		Raman
	fest ^a	fest ^b	fest ^a	CH ₂ Cl ₂	fest ^h	fest "	CH ₂ Cl ₂	fest ^h
μ (OH · · · O) μ (NH) bzw. μ (NH · · · O)	3228m	3233s	3310s-m	3314m		3310s, br 3160s-m, br ^c	3315m	
<i>v</i> _a ,(CH) -OCH ₃ <i>v</i> (CH) -OCH ₃ -			3000Sch			2975s-m 2930s	CH ₂ Cl ₂ - Bd. 2890Sch]	
»(O···HN)						2865s-m 2680s. br	2870s-m }	
r(CO)							2015-Sch] ' 1005-m	
							1910s-m	

fortgesetzt

Zuordnung	I		IV			١٧'		
	IR/FIR	Raman	IR/FIR		Raman	IR/FIR		Raman
	fest ^a	fest ^b	fest ^a	CH ₂ Cl ₂	fest ^b	fest ^a	CH ₂ Cl ₂	fest ^{<i>b</i>}
v(C=0)			1783m-st	1794 st		1777sst	1788st	1769s
δ _c (CH ₃)						1382s-m	1385s	
$\gamma(CH_2)$			~			1305m]	durch	
_ pun				durch		1275m	$CH_2CI_{2^-}$	
\$(NH)	1252m	1250ss	1250m	CH ₂ Cl ₂ -		1250m >	Banden	
p(CH ₃)				Banden		1150s-m	verdeckt	
p(C-C)/p(C-O)			~	verdeckt		1070m)	1075s	
γ(NH)	904st, Sch	910s, br	904st			906st]	durch	
pun	897sst		885st, Sch				CH ₂ Cl ₂ -Bd.	
$\nu_{ac}(NP_2)$	795m	792ss	790m-st			790m	verdeckt	
v ₃ (NP ₂)	595m, br		593m-st	590m		588m-st	588m	597s
β(→CO)								580s, br?
Rh Bhr								495¢ hr
			460s-m	4605		467s-m		460s. hr
»(RhCl)					325m			320ss
			308m-st	312st		304m		306s
r (RhRh)					157m	170s-m		170s

 $CHARAKTERISTISCHE SCHWINGUNGSBANDEN (cm^{-1}) VON Ph_2PNHPPh_2 (I), Rh_2(\mu-CO)(\mu-Ph_2PNHPPh_2)_2Cl_2 (IV) [7] UND Rh_2(\mu-Ph_2PNHPPH_2)_2Cl_2 (IV$

TABELLE 2 (Fortsetzung)

Fig. 5. Strukturvorschlag für IV' im Festzustand.

gebunden sind. Die in Fig. 5 für IV' wiedergegebene Struktur trägt diesen Bindungsverhältnissen Rechnung. In CH_2Cl_2 werden diese Wasserstoffbrückenbindungen aufgehoben und IV' zeigt das gleiche IR-Lösungsspektrum wie IV. CH_3 - und CH_2 -Valenz- und -Deformationsschwingungen belegen für IV' das gleichzeitige Vorliegen von Solvat-Methanol und -Ether [20]. Bemerkenswert erscheint, dass sich IV', im Gegensatz zum solvatfreien IV, in CH_2Cl_2 -Lösung im IR-Licht langsam zersetzt. Gleichzeitig treten im Bereich endständiger $\nu(CO)$ -Banden vier Absorptionen auf. Von diesen können die Banden bei 2015 und 1995 cm⁻¹ dem Kation von IX bzw. in Analogie zu ähnlichen Komplexen [19,21,22] der lediglich chloridüberbrückten Form zugeordnet werden. Die niedrige Lage der anderen zwei $\nu(CO)$ -Banden bei 1910 und 1890 cm⁻¹ deutet auf das Vorliegen einer Rhodium(0)-Verbindung von Typ X hin [23]. Die Bildungweisen dieser beiden Komplexe sind bisher ungeklärt.

Da IV und IV' hinsichtlich der Lage der ν (C=O)- und ν (Rh-Cl)-Banden mit den durch Röntgenstrukturanalyse abgesicherten A-Frame-Komplexen Rh₂(μ -CO)(μ -Ph₂PCH₂PPh₂)₂Br₂ [24] und Rh₂(μ -CO)(μ -Ph₂PC₄H₄N)₂Cl₂ [25] völlig übereinstimmen, können ihre Strukturen durch Analogieschluss als gesichert angesehen werden. Für IV und IV' konnten die Rh-Rh-Bindungen noch durch Raman-Spektren sichergestellt werden.

TABELLE 3

CHARAKTERISTISCHE SCHWINGUNGSBANDEN (cm⁻¹) VON $[Rh_2(\mu-CO)(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]Cl \cdot Solvens (Abkurzungen wie in Tab. 2)$

Zuordnung	Solvens = 0.50H	IOEt ₂ (Va)	Solvens = CH_3O	H (Va')	
	IR/FIR		IR/FIR		Raman
	fest "	CS ₂ /CH ₃ OH	fest ^a	CH ₂ Cl ₂	fest ^b
$\overline{\nu(\mathrm{NH}\cdots\mathrm{O})}$			3220s-m, br		
ν (CH) aliph.	2990s		2990ss]		2990s
• • •	2960ss		2960Sch]		
$\nu(OH \cdots Cl)$			2920s-m, br		
ν (NH · · · Cl)	2810 m 2740Sch ^d br		2785s-m, br		
$\nu(O \cdots HN)$,		2660s, br		
ν (Cl····HO)			2610-s, Sch		
$\nu(Cl \cdots HN)$	2570m-st, br		2550m ∫ ^{bi}		
$\nu(CO)$	2000Sch }	LM-Bd.	2003m	2000ss	2000s-m
	1972sst	1988 m	1980sst	1987m	1975s
	1945Sch ^c		1938Sch ^c ∫		
ν (C=O)	1865st	1875s	1865st	1872s	1863s-m
$\delta(CH_3)$			1370s		
δ(NH)	1335m		1337m		1334ss
v(C-O) CH ₃ OH			1025m-st		1025s-m
$\gamma(NH)$ und	955st		950st		
$v_{as}(NP_2)$	801m-st		815m		
δ(RhCO)			567s-m		553s-n1
			535st		537s
$\nu(RhC)$					492m
			457s-m		468s-m
v(RhClRh)	232s]		232s br		230s-m, br
	214s∫ ⁰¹		214s ⁰¹		220s-m, br
v(Rh-Rh)	-				152m-st

^{*a*} Fest in KBr, unterhalb 400 cm⁻¹ fest in Polyethylen. ^{*b*} Reine Substanz. ^{*c*} Kristalleffekt. ^{*d*} Fällt mit $2 \times \delta$ (NH) zusammen.

In den Festkörper-IR-Spektren von Va und Va' (Tab. 3) beobachtet man zwei breite und bei Va auch sehr intensive Banden bei etwa 2800 und 2550 cm⁻¹. Sie können zweifelsfrei den (NH ··· Cl)-Brückenbindungen zugeordnet werden [7,8] und entsprechen vermutlich Takt- und Gegentaktschwingungen. Da sich im Festkörper-IR-Spektrum von Va keine eindeutigen Hinweise für das Vorliegen von (NH · · · O)-Brückenvalenzschwingungsbanden finden, ist entsprechend Fig. 6 lediglich eine kettenartige (NH ··· Cl⁻ ··· HN)-Verknüpfung der grossvolumigen Kationen anzunehmen. Dementsprechend hat der Solvat-Ether von Va nur die Funktion eines Kristallsolvens. Andere Verhältnise sind bei Va' gegeben. Hier beobachtet man, wie ein Vergleich mit IV' (Tab. 2) zeigt, zusätzliche breite (NH \cdots O)-Brückenvalenzschwingungsbanden bei 3220 und 2660 cm $^{-1}$. Für die zuletzt genannte Bande ist die Zuordnung nicht gänzlich sicher, da in diesem Bereich auch der erster Oberton der δ (NH)-Bande zu erwarten ist. So sind schliesslich die beiden verbleibenden breiten Absorptionen bei 2920 und etwa 2600 cm⁻¹ als (OH \cdots Cl)-Takt- und Gegentaktvalenzschwingungen anzusprechen. Auf Grund der Schwingungsspektren ist anzunehmen, dass die Kationen von Va' im Festzustand durch Methanol und Chlorid-Ionen, entsprechend Fig. 6, kettenartig über Wasserstoffbrückenbindungen verknüpft sind. Ergebnisse [26] einer in Arbeit befindlichen Röntgenstrukturanalyse von Va' scheinen die schwingungsspektroskopischen Ergebnisse zu bestätigen. Die CO- [19,21] und Chloridverbrückung [27] der Kationen konnte für Va und Va' zweifelsfrei belegt werden. Da Va' in schönen Kristallen anfällt, konnte auch die Rh-Rh-Bindung [28] im Raman-Spektrum sicher zugeord-

(Fortsetzung s. S. 312)

Fig. 6. Strukturvorschläge für Va und Va'.

TABELLE 4

CHARAKTERISTISCHE SCHWINGUNGSBANDEN (cm⁻¹) VON [Rh₂(μ -Cl)(μ -Cl)(μ -Ph₂PNHPPh₂)₂(CO)₂]X (X = BPh₄·CH₃OH (Vb), X = PF₆ (Vc), X = [Rh(CO)₂Cl₂]-2CH₃OH (Vd)) (Abkürzungen und Fussnoten siehe Tab. 3)

Zuordnung	Vb			Vc			Vd			
	IR/FIR		Raman	IR/FIR		Raman	IR/FIR		Raman	
	fest ^a	CH ₂ Cl ₂	fest ^h	fest ^a	Aceton	fest ^h	fest "	CH ₂ Cl ₂	fest ^h	
<i>ب</i> (OH)	3515s-m, br							Na Maria Andre Maria Maria Canada Maria Maria Manada Maria Maria Manada Maria Manada Maria Manada Maria Manada		
¢(N ··· N) ¢(NH)	3310s, sf			3260m			3380s-m, br			
P(CH) aliph.	2990s-m						2930s		2942s	
							28305		2830s	
<i>▶</i> (NH · · · Cl)							2980m, br			
»(Cl ··· HN)							2640s-m, br			
P(CO) Anion							2070st	2075m	2066s	
Kation	2003s-m	2010m	2003m	2010Sch]	2010m	2009m		2010Sch]	2002s	
Kation	1983sst]	1993st	1982ss	1987sst	1978sst	1998s-m	1995sst]	1995st	1992s	
Anion				•			1982sst }	1965Sch	1977_{S}	
	1960s 'J			1955Sch]				•		

net werden. Die gleichen Kationen wie in Va und Va' finden sich auch in Vb-Vd. Demgemäss sind die Schwingungsspektren (Tab. 4) im Bereich der endständigen und Brücken-CO-Valenzschwingungsbanden, sowie der anderen Metall-Liganden-Banden sehr ähnlich. Lediglich hinsichtlich der Wechselwirkungen zwischen Kationen und Anionen bzw. den Solvatmolekülen treten neue Varianten auf. So folgt aus der kurzwelligen Lage und scharfen Kontur der ν (NH)-Bande, dass das Kation von Vb mit dem Solvat-Methanol und dem Anion keine Wechselwirkung eingeht. Das Methanol übt hier offensichtlich nur die Rolle eines Kristallsolvens aus. Vb scheint die einzige Verbindung dieser Reihe zu sein, die im Festzustand eine dichteste Packung aus isolierten Kationen, Anionen und Solvatmolekülen besitzt. Vc, dessen NH-Valenzschwingungsbande etwas langwelliger beobachtet wird und deren Lage in etwa der des freien I entspricht, zeigt demgemäss nur eine äusserst geringe Assoziation zwischen Kationen und PF₆-Anionen (Fig. 7). In Übereinstimmung mit der dadurch bedingten Symmetrieerniedrigung $(O_h \rightarrow D_{4h})$ spaltet die $\nu(PF_6)$ -Bande (F_{1u}) in zwei Banden $(A_{2u} + E_u; 857 + 835;$ beide Banden sind IR-aktiv) auf. Das Festkörper-IR-Spektrum von Vd weist zwei breite Banden mittlerer Intensität bei 2980 und 2640 cm⁻¹ auf. Sie werden (NH · · · Cl)-Wasserstoffbrückenbindungen zwischen Kation und dem cis-[Rh(CO)₂Cl₂]-Anion zugeordnet. Ihre im Vergleich zu Va (Tab. 3) deutlich höhere Lage ist verständlich, da die an Rhodium koordinierten Chlorid-Ionen des [Rh(CO)₂Cl₂]-Anions zu den NH-Gruppen des Kations nicht mehr so kurze Wasserstoffbrückenbindungen ausbilden können wie das freie Cl⁻-Ion

Fig. 7. Strukturvorschlag für festes Vc.

in Va oder Va'. Die für das feste Vd weiterhin noch zu beobachtende, breite IR-Bande bei 3380 cm⁻¹ wird OH-Brückenbindungen zugeschrieben. Ihre relativ hohe Lage deutet auf eine Wechselwirkung mit leichten Donatoren hin. Da die ν (CO)-Banden des [Rh(CO)₂Cl₂]-Anions im Vergleich zu anderen Verbindungen, die ebenfalls dieses Anion enthalten [29,30], in ihrer Lage unverändert bleiben, ist die Bildung von (Rh-CO ··· HOCH₃)-Brückenbindungen auszuschliessen. Demgemäss ist eine Wechselwirkung der Methanol-Moleküle mit dem Stickstoff der NH-Gruppen (Fig. 8A) anzunehmen. Allerdings können alternativ schwache Wasserstoffbrückenbindungen des Methanols zu den Chlor-Atomen des [Rh(CO)₂Cl₂]-Anions nicht gänzlich ausgeschlossen werden (Fig. 8B). Betrachtungen an Stereomodellen zeigen, dass in beiden Fällen (A und B) durch den Einbau zweier Methanol-Moleküle die Hohlräume oberhalb und unterhalb des planaren [Rh(CO)₂Cl₂]-Anions weitgehend ausgefüllt sind und so eine dichte Packung von Vd im Festzustand möglich ist.

VI, dessen charakteristische IR-Banden im experimentellen Teil mitgeteilt werden, weist eine ν (NH)-Bande bei 3290 cm⁻¹ auf, die auch in CH₂Cl₂-Lösung ihre Lage beibehält. Auf Grund dieser Lage sind keine NH-Brückenbindungen anzunehmen. Der Diethylether hat offensichtlich nur die Funktion eines Kristallsolvens. Entsprechend der asymmetrischen Struktur von VI findet man im IR-Lösungsspektrum jeweils eine ν (CO)-Bande im Bereich endständiger und Brücken-CO-Valenzschwingungen (in CH₂Cl₂: 1960m und 1855s-m cm⁻¹). Mit Rh₂(μ -I)(μ -CO)(μ -Ph₂AsCH₂AsPh₂)₂(CO)I [31] wurde bisher nur eine Verbindung dieses Typs bekannt. Für VII kann aus den eingangs dargelegten Gründen kein Strukturvorschlag gegeben werden. Die wichtigsten IR-Daten von VII werden im experimentellen Teil

Fig. 8. Strukturvorschläge für den Festzustand von Vd.

TABELLE 5

Zuordnung	VIII			IX		
	IR/FIR		Raman	IR/FIR		Raman
	fest ^a	CH ₂ Cl ₂	fest *	fest a	CH ₂ Cl ₂	fest ^h
v (OH)	3515s-m					
$\nu(\rm NH)$	3280s	3300s		3240s-m, br	3295s-m	
$\nu(CH_3)$	2995ss 2980s		2960s	2990s		2991ss
$\nu(CH_2)$				2930s		
				2860s		
ν(CO)	2010sst	2025m-st	2010s	2020st	2025st	
	1983sst	2005m-st	1982ss	2002sst	2005sst	
$\delta_{as}(CH_3)$	1425s-m			1430s-m		
$\delta_{s}(CH_{3})$	1375s	1388s		1390ss, br	1388s	
δ(NH)	1257s-m	unter CH ₂ Cl ₂ -Bd.		1295s-m		
ν(C-O) CH ₃ OH	1017s-m					
γ(NH) und	945m	930s-m		925m	928m	
$\nu_{as}(NP_2)$	780s-m			778s-m		
δ(RhCO)			557m	560s-m	558s-m	558s-m
und			519m			521m
v(RhC)			480s-m			477m
v(RhClRh)						212s-m

CHARAKTERISTISCHE SCHWINGUNGSBANDEN (cm⁻¹) VON $[Rh_2(\mu-Cl)(\mu-Ph_2PNHPPh_2)_2(CO)_2]BPh_4 \cdot CH_3OH$ (VIII) UND $[Rh_2(\mu-Cl)(\mu-CH_2Cl_2)(\mu-Ph_2PNHPPh_2)_2(CO)_2]BPh_4 \cdot (C_2H_5)_2O$ (IX) (Abkurzungen und Fussnoten siehe Tab. 3.)

genannt. Ein Raman-Spektrum konnte infolge Zersetzung nicht erhalten werden. Aus den hohen Lagen und scharfen Konturen der IR-aktiven $\nu(OH)$ - und $\nu(NH)$ -Banden des festen VIII (Tab. 5) kann gefolgert werden, dass weder die NH-Gruppen

Fig. 9. Strukturvorschläge für den Festzustand von VIII.

Fig. 10. Strukturvorschläge für IX im Festzustand.

des Komplexes noch das Methanol in Wasserstoffbrückenbindungen gebunden sind. Es ist daher anzunehmen, dass das Methanol in VIII lediglich die Funktion eines Kristallsolvenses, oder aber eine Brückenfunktion im Kation ausübt (Fig. 9).

Beide Strukturvorschläge können mit den schwingungspektroskopischen Ergebnissen in Einklang gebracht werden.

Eindeutig gravierende Argumente für die Bildung eines lösungsmittelverbrückten Kations finden sich beim Auflösen von VIII in CH_2Cl_2 . Auffällig ist nicht nur der Farbwechsel von Gelb nach Rot, der die Bildung von IX begleitet, sondern auch die deutlich kurzwellige Verschiebung der $\nu(CO)$ -Banden (Tab. 5). Derart kurzwellige Verschiebungen wurden auch bei analogen SO₂-verbrückten Komplexen beobachtet [22]. Unklar ist, ob CH_2Cl_2 ein- oder zwei-zähnig verbrückend wirkt (Fig. 10). Hier soll mittels Röntgenstrukturanalyse eine Klärung herbeigeführt werden. IX, das aus Methylenchlorid-Lösung mit Diethylether als Etherat in Festsubstanz zugänglich ist, zeigt im Festkörper-IR-Spektrum eine breite, gegenüber VIII etwas langwellig verschobene $\nu(NH)$ -Bande. Daraus folgt, dass der in IX-enthaltene Diethylether offensichtlich mit den NH-Gruppen des Kations schwache Wasserstoffbrückenbindungen eingeht (Fig. 10).

Experimenteller Teil

Sämtliche Versuche wurden unter Luft- und Feuchtigkeitsausschluss in N_2 -Atmosphäre durchgeführt. Die verwendeten Lösungsmittel waren getrocknet, destilliert und N_2 -gesättigt. Die Spektren der beschriebenen Verbindungen und andere

	raroe	ZerP.	Ausb."	M,	M^+	Element	aranalyse	" (Gef. (I	ber.) (%))	Lettfähigkeit (cm ² Ω^{-1} mol ⁻¹)
		(°C)	(%)	$(M_r)^d$			H	z	P	$(Verdinnung (1 mol^{-1}))^f$
² H ₃) ₂ O·CH ₃ OH	ziegel-	260	70	1075.5	1075.5 8	54.97	4.91	2.16		2.4
•	rot			(1181.6)		(54.89)	(4.77)	(2.37)		(4717)
.5(C2H5)20	gelb	170	60	1131.5		54.76	4.00	2.35		35.89
				(1168.6)		(54.48)	(4.05)	(2.40)		(922) *
H ₃ OH	gelb	158	45	1131.5		53.61	4.16	2.36	10.93	80.72
				(1163.6)		(53.68)	(3.98)	(2.40)	(10.65)	(7013) *
CH ₃ OH	gelb-	130	80	1415.3		63.62	4.60	1.81	8.89	45.84
	orange			(1447.3)		(63.07)	(4.59)	(1.94)	(8.54)	(2701)
	gelb	150	62	1241.0		49.31	3.94	2.20	12.54	60.50
						(49.35)	(3.41)	(2.25)	(12.47)	(3378) ^k
сн ₃ он	rot-	164	78	1325.9		47.68	3.28	1.80		38.85
	braun			(1389.9)		(47.53)	(3.63)	(2.02)		(1530)
.5(C2H5)2O	gelb	130	40	1103.5	1101.8 *	54.86	4.33	2.27		0.0
				(1140.6)		(54.76)	(4.15)	(2.46)		(5449)
сн ₃ он	rot	136	5	551.8		51.95	4.27	2.03		
				(615.9)		(52.66)'	(4.75)'	(2.27) '		
H0 ^e H	gelh	135	64	1387.3		63.33	4.66	1.27		33.78
				(1419.3)		(63.46)	(4.68)	(1.97)		(5712) ^g
$(C_2H_5)_2O$	rot	176	94	1472.2		61.32	4.71	1.87		24.77
				(1546.3)		(61.36)	(4.82)	(1.81)		(1399)
	.Н ₃ ОН 5(С ₂ Н ₅) ₂ О :Н ₃ ОН Н ₃ ОН (С ₂ Н ₅) ₂ О	crange Belb Braun 5(C ₂ H ₅) ₂ O gelb H ₃ OH rot H ₃ OH rot C ₂ H ₅) ₂ O rot	C_2H_3OH rot- 164 Belb 150 Belb 150 braun $S(C_2H_5)_2O$ Belb 130 H_3OH rot 136 H_3OH rot 136 H_3OH gelh 135 $C_2H_5)_2O$ rot 176	c_{range} $H_{3}OH$ rot- 164 78 braun $S(C_{2}H_{5})_{2}O$ gelb 130 40 $H_{3}OH$ rot 136 5 $H_{3}OH$ gelb 135 94 $H_{3}OH$ gelb 135 94 $C_{2}H_{5})_{2}O$ rot 176 94	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

DIE ANALYTISCHEN DATEN DER (BIS/DIPHENYLPHOSPHINO)AMIN-P, P/-IRHODIUM(II)-CARBONYL-KOMPLEXE IV', Va-Vd. Va' UND VI-IX

TABELLE 6

316

physikalische Messwerte wurden mit folgenden Geräten ermittelt. IR-Spektren: Zeiss Infrarot-Spektralphotometer IMR 16 und Beckman IR-7, FIR-Spektren: Beckman Modell IR-720-A, Raman Spektren: Varian Cary 82, Kryptonlaser (Erregerlinie 647.1 nm) bzw. Argonlaser (Erregerlinie 514.5 nm) der Fa. Spectra Physics, ¹H-NMR-Spektren: JEOL JNM-PMX-60, ³¹P-NMR-Spektren: JNM-P-S 100, ESR-Spektren: JEOL-JM-PE-3X (100 MHz Feldmodulation); Massenspektren: Varian MAT-CH-5 (IXE-5 Quelle) bzw. Modell 212; Thermogravimetrie: Netsch Simultan Thermoanalyse 429, als Bezugssubstanz diente reines Al₂O₃. Schmelz- bzw. Zersetzungspunkte wurden in abgeschmolzenen Kapillaren ermittelt und sind unkorrigiert. Molmassenbestimmung: Knauer-Dampfdruckosmometer.

Die Ausgangsmaterialien Bis(diphenylphosphino)amin [3] und Di- μ -chloro-bis[dicarbonylrhodium(I)] [32] wurden wie in der Literatur beschrieben dargestellt. Das Rhodiumtrichlorid-trihydrat wurde von der Fa. Merck-Schuchardt (München), das Hexamethyldisilazan und Diphenylphosphinochlorid von der Fa. Ventron GmbH Karlsruhe bezogen.

μ -Carbonyl-di[μ -bis(diphenylphosphino)amin-P,P']-bis[chloro-rhodium(I)]-diethylether-methanol (IV')

589 mg (1.51 mmol) $[Rh(CO)_2Cl_2]$ und 1156 mg (3.00 mmol) Ph₂PNHPPh₂ (I) werden unter Rühren in 75 ml CH₃OH gelöst. Die klare gelbe Lösung wird langsam 5 h zum Sieden erhitzt. Sie wechselt ihre Farbe über orangegelb nach weinrot. Nach etwa 4 h bilden sich langsam feine rotbraune Kristalle. Es wird weiter erhitzt bis die Menge des kristallinen Feststoffes nicht mehr zunimmt. Schliesslich wird auf Raumtemperatur abgekühlt und noch eine weitere Stunde gerührt. Anschliessend wird das Produkt abfiltriert, mit wenig kaltem CH₃OH und reichlich mit Diethylether gewaschen. Dabei verfärbte sich das Produkt von rotbraun nach ziegelrot. Die Substanz wird in Hochvakuum getrocknet. IV' löst sich gut in CH₂Cl₂, CHCl₃ (jedoch tritt in beiden Lösungsmitteln allmählich Zersetzung ein), mässig in CH₃OH und ist unlöslich in Benzol, Hexan und Diethylether.

μ -Carbonyl- μ -chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]chlorid-0.5 diethylether (Va)

In einem Schlenkrohr werden 130 mg (0.12 mmol) IV' in 10 ml CH₃OH suspendiert, dann wird unter ständigem Rühren CO etwa 2 h bei Raumtemperatur durchgeleitet. Nach 1 h wird die anfänglich klargelbe Lösung langsam wieder trüb, wobei ein gelbes Produkt in fester kristalliner Form ausfällt. Zur Vervollständigung der Fällung werden ca. 5 ml Diethylether zugegeben. Der Niederschlag wird abgesaugt, mit wenig kaltem Methanol und gründlich mit Diethylether gewaschen; anschliessend wird im Hochvakuum getrocknet. Va ist allgemein nur wenig löslich, am besten noch in einem Gemisch aus CS₂ und CH₃OH.

μ -Carbonyl- μ -chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]chlorid-methanol (Va')

195 mg (0.5 mmol) $[Rh(CO)_2Cl_2]$ und 387 mg (1.00 mmol) I werden in ein Einschlussrohr gefüllt (Volumen: 48 ml). Man kühlt es mit flüssigem Stickstoff auf ca. – 180°C ab und gibt 40 ml CH₃OH zu, das sofort einfriert. Es wird evakuiert (Ölpumpenvakuum) und das Einschlussrohr unter Vakuum abgeschmolzen. Sodann wird es langsam auf Raumtemperatur erwärmt und in einem Metallschutzrohr im Heizschrank auf 114°C erhitzt. Nach 19 h Reaktionszeit lässt man die Probe im Heizschrank langsam bis auf 40°C abkühlen. Anschliessend wird das Einschlussrohr in der Metallhülse über Nacht bis auf Raumtemperatur abgekühlt, wobei Va' in gelben, gut ausgebildeten Kristallen ausfällt. Nach dem Öffnen des Rohres werden die Kristalle abgesaugt, mehrmals mit je 3 ml kaltem Methanol gründlich gewaschen und dann etwa 5 h im Hochvakuum getrocknet. Die Verbindung besitzt allgemein eine sehr geringe Löslichkeit. Sie ist mässig löslich in CH₃OH, CH₂Cl₂ und CHCl₃, unlöslich in Hexan, Benzol und Ether.

μ -Carbonyl- μ -chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]tetraphenylborat-methanol (Vb)

120 mg (0.10 mmol) IV' werden in 20 ml CH₃OH suspendiert. Man leitet bei Raumtemperatur unter Rühren etwa 15 min CO durch, dabei ensteht eine klare gelbe Lösung. Zu dieser werden 34 mg (0.10 mmol) NaBPh₄, gelöst in etwa 5 ml CH₃OH, hinzugegeben. Um die Reaktion zu vervollständigen, wird CO noch weitere 10 min durchgeleitet. Es fällt kristallines, gelboranges Vb aus. Man saugt ab, wäscht mit wenig kaltem CH₃OH und mehrmals mit je 10 ml Diethylether gründlich aus. Es wird anschliessend 5 h im Hochvakuum getrocknet. Vb löst sich in CH₂Cl₂, CHCl₃ und Aceton, mässig in CH₃OH, und ist unlöslich in Benzol und Ether.

μ -Carbonyl- μ -chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]hexafluorophosphat (Vc)

120 mg (0.10 mmol) IV' werden in 10 ml CH₃OH suspendiert. Durch diese Suspension leitet man etwa 10 min CO, wobei eine klare gelbe Lösung entsteht. Es werden 62 mg (0.38 mmol) NH_4PF_6 zugegeben und noch weitere 15 min CO durchgeleitet, um die Reaktion zu vervollständigen. Es fällt zitronengelbes feinkristallines Vc aus. Die Substanz wird abgesaugt (D4) und gründlich, bis das Filtrat farblos ist, mit Diethylether gewaschen. Anschliessend wird im Hochvakuum getrocknet. Vc löst sich gut in Aceton und CH_2Cl_2 , mässig in CHCl₃ und CH₃OH und ist in Ether unlöslich.

μ -Carbonyl- μ -chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]cis-[dicarbonyl-dichloro-rhodat(I)] \cdot 2 methanol (Vd)

183 mg (0.47 mmol) $[Rh(CO)_2Cl]_2$ und 233 mg (0.61 mmol) I werden in 15 ml Methanol gelöst. Durch die gelbe Lösung wird bei etwa 60°C 5 h CO geleitet. Die Lösung ändert ihre Farbe von gelb nach rot. Es wird im CO-Srom abgekühlt, wobei ein rotbrauner Niederschlag ausfällt. Er wird abfiltriert, mit Diethylether gründlich gewaschen und im Hochvakuum getrocknet. Vd ist löslich in CH₃OH. CH₂Cl₂, CHCl₃, unlöslich in Benzol und Diethylether.

μ -Carbonyl- μ -chloro-di[μ -bis(diphenylphosphino)amin-P,P']-carbonyl-chloro-dirhodium(I)-0.5 diethylether (VI)

270 mg (0.69 mmol) $[Rh(CO)_2Cl]_2$ und 561 mg (1.45 mmol) I werden in 70 ml CH₃OH gelöst. Sodann wird das Reaktionsgemisch 5 h unter geringem Rückfluss erhitzt. Die Lösung bleibt gelb und wird nach dem Abkühlen auf Raumtemperatur noch etwa 1 h gerührt. Nach 4-tägigem Stehen bei Raumtemperatur scheidet sich ein feiner gelber Niederschlag ab, der abfiltriert und aus CH₃OH/Diethylether umgefällt wird. Anschliessend trocknet man ihn im Hochvakuum. VI löst sich gut in CH₂Cl₂,

CHCl₃ und Aceton, mässig in CH₃OH. Es ist unlöslich in Benzol, Ether und Hexan.

IR (fest KBr, cm⁻¹; Abkürzungen s. Tab. 2): 3290 (s, br; ν (NH)), 2970 und 2860 (s; ν (CH) aliph.), 1953 (sst; ν (CO)), 1852 (m-st; ν (C=O)), 1258 (s-m; δ (NH)), 1145 (m-st; ρ (CH₃)), 915 (m; γ (NH)), 785 (m; ν_{as} (NP₂)), 272 (s; ν (RhCl)), 230 und 214 (s-m, br; ν (RhClRh)). (CH₂Cl₂): 3300 (s; ν (NH)), 1960 (m; ν (CO)), 1855 (s-m; ν (C=O)), Raman (feste Reinsubstanz): 152 (s; ν (RhRh)).

Chloro-carbonyl-di[bis(diphenylphosphino)amin]-rhodium(I)-(1-2)-methanol (VII)

Das Filtrat von VI wurde 5 Tage bei -18° C gelagert, wobei rotes VII ausfiel. Nach dem Filtrieren (D4) und Waschen mit Diethylether wurde VII im Hochvakuum getrocknet. VII ist löslich in CH₂Cl₂, CHCl₃ und CH₃OH, unlöslich in Benzol, Hexan und Ether. Ausb.: 84 mg (5%).

IR (fest KBr, cm⁻¹; Abkürzungen s. Tab. 2): 3400 (m, br; ν (OH)), 2940 und 2840 (s, br; ν (CH) aliph.), 2055 (st; ν (CO) bzw. ν (RhH)), 1985 (s, br; ν (RhH)?), 1465 (m; δ_{as} (CH₃)), 1405 (s-m; δ_s (CH₃)), 1215 (m; δ (NH)), 918 (m, br; γ (NH)), 790 (s-m, br; ν_{as} (NP₂)); (CH₂Cl₂): 3310 (s; ν (NH)), 2065 (s-m; ν (CO) bzw. ν (RhH)).

μ -Chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]-tetraphenylborat-methanol (VIII)

66.7 mg (0.04 mmol) Vb werden in 20 ml CH₃OH gelöst. Die Lösung wird zur Entfernung von CO bei Raumtemperatur unter ständigem Rühren im Vakuum bis zu beginnender Niederschlagsbildung eingeengt. Das gelbe VIII wird abfiltriert, mit Diethylether gründlich gewaschen und im Hochvakuum getrocknet. VIII ist in CHCl₃, CH₂Cl₂ und CH₃OH löslich und in Diethylether, Hexan und Benzol unlöslich.

μ -Chloro- μ -dichlormethan-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonyl-rhodium(I)]-tetraphenylborat-diethylether (IX)

60 mg (0.04 mmol) VIII werden in 20 ml CH_2Cl_2 gelöst und bei Raumtemperatur 2 h gerührt. Anschliessend wird die Lösung im Vakuum bis zur beginnenden Niederschlagsbildung eingeengt. Um die Kristallisation zu vervollständigen, werden 10 ml Diethylether zugegeben und die Lösung auf $-18^{\circ}C$ gekühlt. Nach der Filtration wird mit Diethylether gründlich gewaschen und im Hochvakuum getrocknet. IX ist in CH_3OH , CH_2Cl_2 und $CHCl_3$ löslich und in Diethylether unlöslich.

μ -Chloro-di[μ -bis(diphenylphosphino)amin-P,P']-bis[carbonylrhodium(I)]-tetraphenylborat-methanol (VIII)

154 mg (0.10 mmol) rotes IX werden in Methanol gelöst und unter Vakuum bis zur beginnenden Niederschlagsbildung eingeengt. Um die Kristallisation zu vervollständigen gibt man 5–10 ml Diethylether hinzu und kühlt auf -18° C ab. Das gelbe Produkt wird filtriert mit Diethylether gewaschen und im Hochvakuum getrocknet. Es erweist sich auf Grund des IR-Spektrums als VIII.

IR (fest KBr, cm⁻¹; Abkürzungen s. Tab. 2): 3515 (s; ν (OH)), 3280 (s; ν (NH)), 3055 (s-m; ν (CH) arom.), 2993 (s; ν (CH) aliph.), 2015 (st; ν (CO)), 1985 (sst; ν (CO)), 1260 (s-m; δ (NH)), 1020 (s; ν (CO), CH₃OH), 950 (m; γ (NH)).

Dank

Der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie und der Hoechst AG, Frankfurt/Main, danken wir für die Unterstützung unserer Arbeiten.

Literaturverzeichnis

- 1 J. Ellermann und W. Wend, J. Organomet. Chem., 258 (1983) 21.
- 2 D.F. Clemens und H.H. Sisler, Inorg. Chem., 4 (1965) 1222.
- 3 H. Noth und L. Meinel, Z. Anorg. Allg. Chem., 349 (1967) 225.
- 4 O. Schmitz-Du Mont, B. Ross und H. Klieber, Angew. Chem., 79 (1967) 869.
- 5 J. Ellermann und W.H. Gruber, Z. Naturforsch., B, 28 (1973) 310.
- 6 D.S. Payne und A.P. Walker, J. Chem. Soc. C, (1966) 498.
- 7 J. Ellermann, E.F. Hohenberger, W. Kehr, A. Purzer und G. Thiele, Z. Anorg. Allg. Chem., 464 (1980) 45.
- 8 J. Ellermann und L. Mader, Z. Naturforsch., B, 35 (1980) 307.
- 9 J. Ellermann, N. Geheeb, G. Zoubek und G. Thiele, Z. Naturforsch., B, 32 (1977) 1271.
- 10 H. Schmidbaur, F.E. Wagner und A. Wohlleben-Hammer, Chem. Ber., 112 (1979) 496.
- 11 J. Ellermann und M. Lietz, Z. Naturforsch., B, 35 (1980) 64.
- 12 J. Ellermann und M. Lietz, unveröffentlichte Ergebnisse, M. Lietz, Diplomarbeit Univ. Erlangen-Nurnberg (1977).
- 13 H. Schmidbaur, S. Lauteschläger und B. Milewski-Mahrla, Chem. Ber., 116 (1983) 1403.
- 14 R.B. King, Acc. Chem. Res., 13 (1980) 243.
- 15 G. DeLeeuw, J.S. Field, R.J. Haines, B. McCulloch, E. Meintjies, C. Monberg, K.G. Moodley, G.M. Oliver, C.N. Sampson und N.D. Steen, J. Organomet. Chem., 228 (1982) C66.
- 16 D.M. Hoffman und R. Hoffmann, Inorg. Chem., 20 (1981) 3543 und die dort zit Lit.
- 17 A.R. Sanger, C.G. Lobe und J.E. Weiner-Fedorak, Inorg. Chim. Acta, 53 (1981) L123.
- 18 R.S. Drago, E.D. Nyberg, A.E. Amma und A. Zombeck, Inorg. Chem., 20 (1981) 641
- 19 M. Cowie, J.T. Mague und A.R. Sanger, J. Am. Chem. Soc., 100 (1978) 3628.
- 20 H. Günzler und H. Böck, IR-Spektroskopic, Taschentext 43/44, S. 181 Verlag Chemie, Weinheim 1975.
- 21 J.T. Mague und A.R. Sanger, Inorg. Chem., 18 (1979) 2060.
- 22 M. Cowie und S.K. Dwight, Inorg. Chem., 18 (1979) 2700, und 19 (1980) 209.
- 23 C.P. Kubiak und R. Eisenberg, J. Am. Chem. Soc., 102 (1980) 3637
- 24 M. Cowie und S.K. Dwight, Inorg. Chem., 19 (1980) 2508.
- 25 J.P. Farr, M.M. Olmstead und A.L. Balch, J. Am. Chem. Soc., 102 (1980) 6654.
- 26 J. Ellermann, G. Liehr und Gy. Szucsányi, unveröffentlichte Ergebnisse.
- 27 D.M. Adams, Metal-Ligand and Related Vibrations S. 69, Edward Arnold Publishers London, 1967.
- 28 J. Weidlein, U. Müller und K. Dehnicke, Schwingungsspektroskopie, S 157, Georg Thieme Verlag Stuttgart, 1982.
- 29 J. Browning, P.L. Goggin, R.J. Goodfellow, M.G. Norton, A.J.M. Rattray, B.F. Taylor und J. Mink, J. Chem. Soc., Dalton Trans (1977) 2061.
- 30 W.R. Cullen and J.A.J. Thompson, Can. J. Chem., 48 (1970) 1730.
- 31 R.A. Sanger, J. Chem. Soc., Dalton Trans., (1981) 228.
- 32 J. Powell und B.L. Shaw, J. Chem. Soc. A, (1968) 211.